Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 33(11): 2024-2031, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36178343

RESUMO

The chemical structure of an organic molecule has a direct influence on its three-dimensional conformation. One way to obtain information on this conformation is to use ion mobility spectrometry. This technique allows the separation of different isomers according to their collision cross section (CCS) with an inert gas. Smaller or more compact molecules will have lower collision cross section values than larger molecules. The CCS is an intrinsic ion parameter for a specific gas and is thus predictable. Today, calculations of rigid molecules are commonly performed to obtain additional structural information on an ion. However, calculations are more complex with very flexible molecules. In particular, molecules presenting long alkyl chains can yield a high number of conformers. Each conformer is then associated with a CCS value that is specific to it. We report, here, a methodology to predict CCS of flexible molecules. The used approach is based on automatic conformers research followed by geometry optimization and CCS calculations. Determination of theoretical and experimental CCS values for a rigid polycyclic aromatic hydrocarbons (PAHs) standard was used to calibrate the Mobcal software. Then, 13 standard molecules ranging from 4 to 19 carbon alkyl chains, including three long alkyl chain isomers of C22H38, were analyzed on a TWIMS-ToF and calculated using our methodology. CCS deviations between experimental and theoretical values were found to be less than 1.5% over the whole studied CCS range. This method was finally applied for structural analysis of petroleum compounds refractory to the hydro-denitrogenation process.


Assuntos
Espectrometria de Mobilidade Iônica , Software , Isomerismo , Espectrometria de Massas/métodos
2.
Talanta ; 237: 122915, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736651

RESUMO

Mass Spectrometry Imaging is an effective technology that allows to determine the in-situ distribution of endogen and/or exogen small molecules. It is a rapidly emerging approach for visualizing drugs and their metabolites within biological tissues. Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry Imaging (MSI) coupled to high resolving power analyzer (e.g. TOF) was already investigated for metallodrug localization and metabolization studies, but was proved to suffer from a lack of sensitivity and resolution, leading to poor coverage and assignment. To counter these technological limitations, the use of ultra-high resolving power analyzer such as Fourier Transform Ion Cyclotron Resonance (FTICR) could be revealed as a technique of choice. The high field FTICR MS provides ultra-high resolving power and mass accuracy that allows exhaustive molecule coverage and non-ambiguous molecular formula assignments. Platinum derivatives, such as oxaliplatin, are widely used as therapeutic agents for cancer treatment. The assessment of their intake, distribution and metabolism within the organs is important to know the risks associated with their use. In this study, MALDI FTICR MSI analyses were performed to better understand the penetration and metabolization of platinum derivatives in ovaries of women treated by Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for peritoneal metastasis of colorectal or appendicular origin. Twelve ovary sections, from six ovary samples in six women donors, before and after treatment, were analyzed with 120 µm spatial resolution. For the first time, the high resolving power (220,000 at m/z 457) and sub-ppm accuracy (<1 ppm) of the FTICR combined with an Isotopic Fine Structure study enabled to distinguish two Pt-isobaric species derived from oxaliplatin in biological tissues. One of these, which is unknown, was specifically localized at the contour of the ovary.


Assuntos
Ciclotrons , Lasers , Análise de Fourier , Humanos , Oxaliplatina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Analyst ; 146(13): 4161-4171, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34047731

RESUMO

Molecular characterization of compounds present in highly complex mixtures such as petroleum is proving to be one of the main analytical challenges. Heavy fractions, such as asphaltenes, exhibit immense molecular and isomeric complexity. Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with its unequalled resolving power, mass accuracy and dynamic range can address the isobaric complexity. Nevertheless, isomers remain largely inaccessible. Therefore, another dimension of separation is required. Recently, ion mobility mass spectrometry has revealed great potential for isomer description. In this study, the combination of trapped ion mobility and Fourier transform ion cyclotron resonance mass spectrometry (TIMS-FTICR) is used to obtain information on the structural features and isomeric diversity of vanadium petroporphyrins present in heavy petroleum fractions. The ion mobility spectra provided information on the isomeric diversity of the different classes of porphyrins. The determination of the collision cross section (CCS) from the peak apex allows us to hypothesize about the structural aspects of the petroleum molecules. In addition, the ion mobility signal full width at half maximum (FWHM) was used as a measure for isomeric diversity. Finally, theoretical CCS determinations were conducted first on core structures and then on alkylated petroporphyrins taking advantage of the linear correlation between the CCS and the alkylation level. This allowed the proposal of putative structures in agreement with the experimental results. The authors believe that the presented workflow will be useful for the structural prediction of real unknowns in highly complex mixtures.

4.
Anal Chem ; 93(14): 5872-5881, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33784070

RESUMO

The in-depth isomeric and isobaric description of ultra-complex organic mixtures remains one of the most challenging analytical tasks. In the last two decades, ion mobility coupled to high-performance mass spectrometry added an additional structural dimension. Despite tremendous instrumental improvements, commercial devices are still limited in ion mobility and mass spectrometric resolving power and struggle to resolve isobaric species and complex isomeric patterns. To overcome these limitations, we explored the capabilities of cyclic ion mobility high-resolution mass spectrometry with special emphasis on petrochemical applications. We could show that quadrupole-selected ion mobility mass spectrometry gives closer insights into the isomeric distribution. In combination with slicing the specific parts of the ion mobility dimension, isobaric interferences could be drastically removed. Collision-induced dissociation (CID) allowed separating structural groups of polycyclic aromatic hydrocarbons and heterocycles (PAH/PASH), deploying up to 10 passes in the cyclic ion mobility device. Finally, we introduce a data processing workflow to resolve the 3.4 mDa SH4/C3 mass split by combining ion mobility and mass spectrometric resolving power. Cyclic ion mobility with the intelligent design of experiments and processing routines will be a powerful approach addressing the isobaric and isomeric complexity of ultra-complex mixtures.

5.
J Am Soc Mass Spectrom ; 32(1): 206-217, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33237780

RESUMO

Anthropogenic air pollution has a severe impact on climate and human health. The immense molecular complexity and diversity of particulate matter (PM) is a result of primary organic aerosol (POA) as well as secondary organic aerosols (SOAs). In this study, a direct inlet probe (DIP), i.e., atmospheric solids analysis probe (ASAP), with ion mobility high-resolution mass spectrometric detection is applied. Primary particulate matter emissions from three sources were investigated. Furthermore, photochemically aged emissions were analyzed. DIP introduction allowed for a direct analysis with almost no sample preparation and resulted in a complex molecular pattern. This pattern shifted through oxidation processes toward heavier species. For diesel emissions, the fuel's chemical characteristic is partially transferred to the particulate matter by incomplete combustion and characteristic alkylated series were found. Polycyclic aromatic hydrocarbons (PAHs) were identified as major contributors. Ion mobility analysis results in drift time profiles used for structural analysis. The apex position was used to prove structural changes, whereas the full-width-at-half-maximum was used to address the isomeric diversity. With this concept, the dominance of one or a few isomers for certain PAHs could be shown. In contrast, a broad isomeric diversity was found for oxygenated species. For the in-depth specification of fresh and aged spruce emissions, the ion mobility resolving power was almost doubled by allowing for three passes in the circular traveling wave design. The results prove that ASAP coupled with ion mobility spectrometry-mass spectrometry (IMS-MS) serves as a promising analytical approach for tackling the vast molecular complexity of PM.

6.
Faraday Discuss ; 218(0): 417-430, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31120046

RESUMO

Heavy petroleum fractions such as vacuum gas oils (VGOs) are structurally and compositionally highly complex mixtures. Nitrogen species, which have a significant impact on the subsequent refining processes, are generally removed by the hydrodenitrogenation (HDN) catalytic process. The purpose of this study was to identify and characterize compounds that are refractory to the HDN process. This may allow for the examination of the effectiveness of a vacuum distillate hydrotreatment catalytic bed in removing nitrogen-containing compounds before the cracking step. Three different VGO fractions of the same oil before and after HDN processes were analysed in ESI(+) mode by FTICR mass spectrometry and ion mobility spectrometry-mass spectrometry (IMS-MS), in particular compounds containing basic nitrogen, such as quinoline and isoquinoline. Ultra-high-resolution FTICR mass spectrometry provides a sufficiently high mass resolution power to resolve different compounds and attribute a unique molecular formula to each ion. Information on the isomeric content was obtained by use of tandem mass spectrometry (MS/MS) and IMS-MS. The evolution of the fragmentation of the N1 class of compounds as a function of collision energy allowed for the identification of the molecular nucleus raw formula. From the IMS-MS experiments, it clearly appeared that, based on the IMS peak width, a lower isomeric dispersity was obtained after the HDN process and, based on the drift time and collision cross section determination, species presenting longer alkyl branches are the molecules most refractory to the HDN process.

7.
J Am Soc Mass Spectrom ; 30(7): 1169-1173, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31066005

RESUMO

The aerosols present in the atmosphere of the Saturn's moon Titan are of particular planetary science interest and several spacecraft missions are already allowed to gather spectroscopic data. Titan haze's analogs, so-called tholins, were produced on earth to push forward the comprehension of their formation and properties. In this study, this highly complex mixture was analyzed here for the first time by trapped ion mobility spectrometry coupled to ultra-high resolution mass spectrometry (FTICR MS). Electrospray ionization revealed the characteristic CHNx-class components, with CHN5-6 and DBE 6-7 most abundant. Deploying specialized visualization, enabled by accurate mass measurements and elemental composition assignments, the adapted Kendrick mass defect analysis highlights the C2H3N homolog series, whereas the nitrogen-modified van Krevelen diagram exhibits a clear trend towards H/C 1.5 and N/C 0.5. More interestingly, the representation of m/z versus collision cross section (CCS) allowed hypothesizing a ramified N-PAH structural motif. State-of-the-art IMS is currently not able to resolve the isomeric continuum of ultra-complex mixtures; thus, peak parameters other than the CCS value are explored. As such, analyzing the mobility peak width versus m/z shows a linear increase in isomeric diversity between m/z 170 and 350 and a near plateau in diversity at higher m/z for the N-PAH-like structure. Due to the high complexity of the sample, these structural insights are only to be revealed by TIMS-FTICR MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...